2013年2月5日 星期二

This Is Why Your Kickstarter Project Is Late

Twine is exactly the type of sensor-stuffed, Wi-Fi-connected gadget you would expect to take off in Kickstarter's tech section. The device promises to make your washing machine tweet when the laundry is done and your basement send an email when it floods. Blogs called it “the future” within a week after debuting. Nobody was surprised when it raised more than half-a-million dollars--except for its creators.

When John Kestner and David Carr posted Twine on Kickstarter in November 2011, they had set their fundraising goal at $35,000. Their plan was to produce about 200 units using the same process that created the prototype. But six weeks later, having raised $556,541, they were now committed to shipping almost 4,000 units. The homemade wax mold used to create Twine's prototype was no longer going to cut it, and there wasn't another plan. “We were definitely not thinking of the risk of being too successful,” Kestner tells Fast Company.

In scaling their manufacturing process, tasks the team of two hadn't considered--customizing a $15,000 set of tooling, designing packaging, communicating with backers, and searching for components--added up to an unmanageable number of full-time jobs. Twine’s estimated delivery date of March quickly became unrealistic.

Despite the disproportionate attention that superstar Kickstarter projects like Twine get, they're rare. Most projects raise less than $10,000, and until last year, none had raised more than $1 million. But as Kickstarter's scale rockets, breakaway projects like Twine are becoming not only more visible but more common. Seventeen Kickstarter projects passed the $1 million (or euro equivalent) milestone last year. Six of them, like Twine, were gadget projects, which are arguably left in the most awkward position after breakout success. When a Kickstarter project involving hardware takes off, what started as a dream and a prototype can morph into a mass-manufacturing commitment within a couple of weeks. It’s something of a Cinderella story--but one in which Cinderella must learn how to navigate mass manufacturing overnight. Here is how it worked out for Twine.

Prototyping Twine cost a few hundred dollars. Recently graduated from MIT’s Media Lab, Kestner and Carr “squirreled away” a space to work in the basement of a Harvard dorm. Carr already owned a soldering iron and the electronics equipment for Twine’s circuit board, and he carved a wax mold for Twine's blue outer casing using a milling machine that he had built himself. Silicone and urethane cost about $100 at a local supply shop, and the toaster oven where Twine's first casing baked for six hours cost another $20.

It wasn't until the third day of the Kickstarter project, when Twine's funding passed three times the original goal, that the pair of inventors realized Twine had scaled past this manufacturing process. “If we had done 4,000,” Kestner says, “it would have taken months just to physically manufacture them. That’s not including all of the development time.”

3-D printing, Github-type sites for creating hardware such as Upverter, and makerspaces like Boston-based Artisan Aylum have all made the path to creating a functional prototype or a small batch of gadgets easier. “But the big gotchya,” says Scott Miller, the CEO of a production consultancy called Dragon Innovation that has about 20 Kickstarter projects as clients, “is that is really just the beginning, and there’s a tremendous amount of work to do after that. Because the entrepreneurs have a lot of unknown unknowns, they don’t really know how far along the timeline they are. And typically they will think they’re a lot closer to getting volume on the shelf or e-commerce than they actually are.”

All of Twine’s manufacturing partners and most of its component sources are located in the United States, which successfully avoided the problems with language, time, and cultural barriers that Kickstarter projects such as Pebble and LIFX have dealt with while manufacturing their products in China. Even without overseas manufacturing, however, there were plenty of unanticipated challenges.

The company that manufactured Twine’s outer casing, for instance, didn’t design the tooling it used to shape them. Kestner did. Whether or not his designs ended up being functional, they each would cost $15,000. Twine’s gut, the part that holds its circuit board, is made of hard plastic and was easy to test with a 3-D printer before putting money down for the real deal. But only one 3-D printer would prototype the tooling for Twine’s rubber casing, and the results weren’t nearly as accurate as the gut prototypes. When the actual metal tooling arrived, it was a disaster. The case was too tight,Come January 9 and chip card driving licence would be available at the click of the mouse in Uttar Pradesh. and it looked terrible. Problems with the manufacturer’s preview software got the team a refund, but the lost cost could have killed the project. Even with the refund, it cost time. All together, it took five months to just design Twine’s outer casing.Ein innovativer und moderner Werkzeugbau Formenbau.

Meanwhile, Twine’s first employee coordinated the delivery of 100 components to the factory that assembled Twine’s circuit boards--a job that was part scavenger hunt and part logistical Olympics. Kestner worked on a design for Twine’s packaging and put together a website for managing Twine backers’ new addresses and international shipping costs.

By the time the casing and circuit boards began arriving in June, the team had moved to Austin. Boxes started piling up in their new workspace. The casing arrived from an injection molding plant in Minnesota. Circuit boards came from a manufacturer in New Hampshire. And the 8-piece boxes that Kestner designed himself came from North Carolina in large flats. Supermechanical, the company behind Twine, had already spent nearly all of its Kickstarter money. It had overshot its estimated shipping date by three months,Online shopping for luggage tag from a great selection of Clothing. and it hadn’t even started putting devices together.

It isn't just first-time hardware entrepreneurs that struggle with the manufacturing demands of surprise scaling via Kickstarter. Pebble Technology's CEO, Eric Migicovsky,Where you can create a custom lanyard from our wide selection of styles and materials. has been working on smartwatches for four years. The company manufactured about 1,500 units of its first product, InPulse, at a Bay Area manufacturer. But the 85,000 Pebble smartwatches the company owes Kickstarter backers after raising $10 million on the site required a shift to an overseas manufacturing process, and--though Migicovsky says this plan B existed in advance--the company missed its September estimated delivery date.

In fact, most breakaway hardware projects have missed their deadlines. iPhone station Elevation Dock shipped about six months late. Virtual reality headset Oculus Rift initially set its expected delivery date for October, but announced recently that it now expects to be delivering developer kits by March 2013. By one estimate, only 25% of Kickstarter’s design and technology products deliver on time.Can you spot the answer in the fridge magnet?

Being late is not necessarily a big deal. Kickstarter is, after all, designed to support unfinished projects. A bigger problem is reaching a Kickstarter funding goal only to realize that the funding can’t come close to covering your costs. Twine, for instance, set its goal at $35,000—aiming as low as possible in order to avoid missing it.

“If we had gotten less than we did, but still met our goal, that would have really hurt us; we would have lost money,” Kestner says. “There’s an uncomfortable valley between hand-making stuff and being able to have the capital to invest in tooling and all the stuff that goes into mass manufacturing that you just can’t get good prices on without mass production. So what do you do? You can’t afford to hand-make 1,000 of something.”

沒有留言:

張貼留言